Riemannian Symmetric Spaces and Bounded Domains in C

نویسنده

  • Laura DeMarco
چکیده

This paper is to serve as an introduction to the study of symmetric spaces, with the goal of describing Hermitian symmetric spaces of noncompact type. There are three basic types of symmetric space: compact, noncompact, and Euclidean, defined in terms of properties of g, the Lie algebra of its group of isometries. It turns out that a simply connected symmetric space can be described completely in terms of the pair (g, s), where s is an involutive automorphism of g. All symmetric spaces of noncompact and Euclidean type are simply connected, but the compact case is quite different and a full understanding is beyond the scope of this paper. Our main goal is to discuss the Hermitian symmetric spaces which are all simply connected, and in particular to prove that those of noncompact type are exactly the bounded symmetric domains in Cn with Riemannian structure given by the Bergman metric. Section 1 gives basic definitions and properties of symmetric spaces with some examples at the end. Section 2 contains a summary of the basics of Lie algebras, and Section 3 provides an overview of the decomposition of symmetric spaces into compact, noncompact, and Euclidean type. We achieve our main goal in Section 4. It should be mentioned that a complete classification of symmetric spaces is possible using the classification of semisimple Lie algebras. While the details of the classification will not be carried out here, Section 5 outlines the basic strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

Geometry of the Shilov Boundary of a Bounded Symmetric Domain

In the first part, the theory of bounded symmetric domains is presented along two main approaches: as special cases of Riemannian symmetric spaces of the noncompact type on one hand, as unit balls in positive Hermitian Jordan triple systems on the other hand. In the second part, an invariant for triples in the Shilov boundary of such a domain is constructed. It generalizes an invariant construc...

متن کامل

On a class of paracontact Riemannian manifold

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.

متن کامل

Generalized Symmetric Berwald Spaces

In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.

متن کامل

Composition operators between growth spaces‎ ‎on circular and strictly convex domains in complex Banach spaces‎

‎Let $\Omega_X$ be a bounded‎, ‎circular and strictly convex domain in a complex Banach space $X$‎, ‎and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$‎. ‎The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$‎ ‎such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$‎ ‎for some constant $C>0$‎...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999